Floating
Point arithmetic is an arithmetic operation on floating point numbers which
include addition, subtraction, multiplication and division. The operations are
done with algorithms similar to those used on sign magnitude integers.
Addition :
Using a 4
digit decimal example;
9.988 x101 + 2.332 x 10-1
>9.988 x 101 + 0.023 x
101
>9.988 x101 + 0.023 x
101 = 10.011 x 101
>10.011 x 101 (overflow) = 1.0011 x 102
Answer = 1.001 x 102
Subtraction
Example 2:
(subtraction)
Using 4
digit Binary example:
>1.0002 x 2-1 -1.0002 x2-2 ( 0.5 –
0.25)
>1.0002 x2-1 - 0.1002 x 2-1
>1.0002 x2-1 - 0.1002 x 2-1
= 0.1002 x2-1
>0.1002 x 2-1
( under flow)
Answer = 1.0002 x 2
Multiplication
Using 4bit
decimal example:
1.111 x 1010 X 9.500
x 10-7
>New exponent = 10 -7 = 3
>1.111 x 9.500 = 10.5545 x 103
>10.5545 x 103 (overflow)
= 1.056 x 104
Example in
binary:
1011.01 x 110.1
1011.01
X 110.1
101101
0
101101
101101
-------------------
1001001.001
1001001.001
Division
11111100 /
110= 101010
101010
--------------
110)
11111100
110
------------
111
110
-------------
110
110
-------------
0
0
------
Rounding
Rounding
Decimal:
Example 1:
0.8842 round to 3 decimal places = 0.884
round
to 2 decimal places = 0.88
round toward
+ infinity
example 2:
1.23 round
to 2 decimal places = 1.3
-2.86 round
to 2 decimal places = -2.8
round toward
– infinity
example 3
1.23 round
to 2 decimal places = 1.2
-2.86 round
to 2 decimal places = -2.9
No comments:
Post a Comment